Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.453
Filtrar
1.
Bioconjug Chem ; 35(5): 703-714, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708860

RESUMO

Manganese(II)-based contrast agents (MBCAs) are potential candidates for gadolinium-free enhanced magnetic resonance imaging (MRI). In this work, a rigid binuclear MBCA (Mn2-PhDTA2) with a zero-length linker was developed via facile synthetic routes, while the other dimer (Mn2-TPA-PhDTA2) with a longer rigid linker was also synthesized via more complex steps. Although the molecular weight of Mn2-PhDTA2 is lower than that of Mn2-TPA-PhDTA2, their T1 relaxivities are similar, being increased by over 71% compared to the mononuclear Mn-PhDTA. In the presence of serum albumin, the relaxivity of Mn2-PhDTA2 was slightly lower than that of Mn2-TPA-PhDTA2, possibly due to the lower affinity constant. The transmetalation reaction with copper(II) ions confirmed that Mn2-PhDTA2 has an ideal kinetic inertness with a dissociation half-life of approximately 10.4 h under physiological conditions. In the variable-temperature 17O NMR study, both Mn-PhDTA and Mn2-PhDTA2 demonstrated a similar estimated q close to 1, indicating the formation of monohydrated complexes with each manganese(II) ion. In addition, Mn2-PhDTA2 demonstrated a superior contrast enhancement to Mn-PhDTA in in vivo vascular and hepatic MRI and can be rapidly cleared through a dual hepatic and renal excretion pattern. The hepatic uptake mechanism of Mn2-PhDTA2 mediated by SLC39A14 was validated in cellular uptake studies.


Assuntos
Meios de Contraste , Fígado , Imageamento por Ressonância Magnética , Manganês , Manganês/química , Fígado/diagnóstico por imagem , Fígado/metabolismo , Imageamento por Ressonância Magnética/métodos , Animais , Meios de Contraste/química , Meios de Contraste/síntese química , Humanos , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/química , Camundongos , Complexos de Coordenação/química , Complexos de Coordenação/síntese química
2.
J Nanobiotechnology ; 22(1): 245, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735921

RESUMO

BACKGROUND: The general sluggish clearance kinetics of functional inorganic nanoparticles tend to raise potential biosafety concerns for in vivo applications. Renal clearance is a possible elimination pathway for functional inorganic nanoparticles delivered through intravenous injection, but largely depending on the surface physical chemical properties of a given particle apart from its size and shape. RESULTS: In this study, three small-molecule ligands that bear a diphosphonate (DP) group, but different terminal groups on the other side, i.e., anionic, cationic, and zwitterionic groups, were synthesized and used to modify ultrasmall Fe3O4 nanoparticles for evaluating the surface structure-dependent renal clearance behaviors. Systematic studies suggested that the variation of the surface ligands did not significantly increase the hydrodynamic diameter of ultrasmall Fe3O4 nanoparticles, nor influence their magnetic resonance imaging (MRI) contrast enhancement effects. Among the three particle samples, Fe3O4 nanoparticle coated with zwitterionic ligands, i.e., Fe3O4@DMSA, exhibited optimal renal clearance efficiency and reduced reticuloendothelial uptake. Therefore, this sample was further labeled with 99mTc through the DP moieties to achieve a renal-clearable MRI/single-photon emission computed tomography (SPECT) dual-modality imaging nanoprobe. The resulting nanoprobe showed satisfactory imaging capacities in a 4T1 xenograft tumor mouse model. Furthermore, the biocompatibility of Fe3O4@DMSA was evaluated both in vitro and in vivo through safety assessment experiments. CONCLUSIONS: We believe that the current investigations offer a simple and effective strategy for constructing renal-clearable nanoparticles for precise disease diagnosis.


Assuntos
Rim , Imageamento por Ressonância Magnética , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Imageamento por Ressonância Magnética/métodos , Camundongos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Ligantes , Rim/diagnóstico por imagem , Rim/metabolismo , Linhagem Celular Tumoral , Meios de Contraste/química , Feminino , Camundongos Endogâmicos BALB C , Humanos , Distribuição Tecidual , Neoplasias/diagnóstico por imagem , Nanopartículas de Magnetita/química , Nanopartículas/química
3.
Int J Nanomedicine ; 19: 4121-4136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736655

RESUMO

Purpose: This study aims to broaden the application of nano-contrast agents (NCAs) within the realm of the musculoskeletal system. It aims to introduce novel methods, strategies, and insights for the clinical management of ischemic muscle disorders, encompassing diagnosis, monitoring, evaluation, and therapeutic intervention. Methods: We developed a composite encapsulation technique employing O-carboxymethyl chitosan (OCMC) and liposome to encapsulate NCA-containing gold nanorods (GNRs) and perfluoropentane (PFP). This nanoscale contrast agent was thoroughly characterized for its basic physicochemical properties and performance. Its capabilities for in vivo and in vitro ultrasound imaging and photothermal imaging were authenticated, alongside a comprehensive biocompatibility assessment to ascertain its effects on microcirculatory perfusion in skeletal muscle using a murine model of hindlimb ischemia, and its potential to augment blood flow and facilitate recovery. Results: The engineered GNR@OCMC-liposome/PFP nanostructure exhibited an average size of 203.18±1.49 nm, characterized by size uniformity, regular morphology, and a good biocompatibility profile. In vitro assessments revealed NCA's potent photothermal response and its transformation into microbubbles (MBs) under near-infrared (NIR) irradiation, thereby enhancing ultrasonographic visibility. Animal studies demonstrated the nanostructure's efficacy in photothermal imaging at ischemic loci in mouse hindlimbs, where NIR irradiation induced rapid temperature increases and significantly increased blood circulation. Conclusion: The dual-modal ultrasound/photothermal NCA, encapsulating GNR and PFP within a composite shell-core architecture, was synthesized successfully. It demonstrated exceptional stability, biocompatibility, and phase transition efficiency. Importantly, it facilitates the encapsulation of PFP, enabling both enhanced ultrasound imaging and photothermal imaging following NIR light exposure. This advancement provides a critical step towards the integrated diagnosis and treatment of ischemic muscle diseases, signifying a pivotal development in nanomedicine for musculoskeletal therapeutics.


Assuntos
Meios de Contraste , Ouro , Isquemia , Músculo Esquelético , Nanotubos , Ultrassonografia , Animais , Ouro/química , Nanotubos/química , Meios de Contraste/química , Meios de Contraste/farmacologia , Camundongos , Isquemia/diagnóstico por imagem , Isquemia/terapia , Músculo Esquelético/diagnóstico por imagem , Ultrassonografia/métodos , Membro Posterior/irrigação sanguínea , Fluorocarbonos/química , Fluorocarbonos/farmacologia , Lipossomos/química , Quitosana/química , Quitosana/farmacologia , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/terapia , Terapia Fototérmica/métodos , Modelos Animais de Doenças , Humanos , Pentanos
4.
Biomacromolecules ; 25(5): 3153-3162, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38693895

RESUMO

A photoacoustic (PA) imaging technique using the second near-infrared (NIR-II) window has attracted more and more attention because of its merits of deeper penetration depth and higher signal-to-noise (S/N) ratio than that using the first near-infrared (NIR-I) one. However, the design and development of high-performance PA imaging contrast agents in the NIR-II window is still a challenge. A semiconducting polymer, constructed by asymmetric units, exhibits regiorandom characteristics that effectively increase the distortion of the backbone. This increase in the degree of twist can regulate the twisted intramolecular charge transfer (TICT) effect, resulting in an enhancement of the PA signal. In this paper, an asymmetric structural acceptor strategy is developed to improve the PA signals of the resulting semiconducting polymer (PATQ-MP) in the NIR-II window with improved brightness, higher S/N ratio, and better photothermal conversion efficiency compared to polymers with the same main-chain structure containing a symmetric acceptor. DFT analysis showed that PATQ-MP containing an asymmetric acceptor monomer had a larger dihedral angle, which effectively improved the PA signal intensity by enhancing the TICT effect. The PEG-encapsulated PATQ-MP nanoparticles exhibit promising performance in the PA imaging of mouse tumors in vivo, demonstrating the clear identification of microvessels as small as 100 µm along with rapid metabolism within a span of 5 h. Therefore, this work provides a unique molecular design strategy for improving the signal intensity of PA imaging in the NIR-II window.


Assuntos
Técnicas Fotoacústicas , Polímeros , Semicondutores , Técnicas Fotoacústicas/métodos , Animais , Camundongos , Polímeros/química , Quinoxalinas/química , Feminino , Humanos , Tiadiazóis/química , Raios Infravermelhos , Camundongos Nus , Camundongos Endogâmicos BALB C , Meios de Contraste/química
5.
J Appl Clin Med Phys ; 25(5): e14340, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605540

RESUMO

BACKGROUND: Global shortages of iodinated contrast media (ICM) during COVID-19 pandemic forced the imaging community to use ICM more strategically in CT exams. PURPOSE: The purpose of this work is to provide a quantitative framework for preserving iodine CNR while reducing ICM dosage by either lowering kV in single-energy CT (SECT) or using lower energy virtual monochromatic images (VMI) from dual-energy CT (DECT) in a phantom study. MATERIALS AND METHODS: In SECT study, phantoms with effective diameters of 9.7, 15.9, 21.1, and 28.5 cm were scanned on SECT scanners of two different manufacturers at a range of tube voltages. Statistical based iterative reconstruction and deep learning reconstruction were used. In DECT study, phantoms with effective diameters of 20, 29.5, 34.6, and 39.7 cm were scanned on DECT scanners from three different manufacturers. VMIs were created from 40 to 140 keV. ICM reduction by lowering kV levels for SECT or switching from SECT to DECT was calculated based on the linear relationship between iodine CNR and its concentration under different scanning conditions. RESULTS: On SECT scanner A, while matching CNR at 120 kV, ICM reductions of 21%, 58%, and 72% were achieved at 100, 80, and 70 kV, respectively. On SECT scanner B, 27% and 80% ICM reduction was obtained at 80 and 100 kV. On the Fast-kV switch DECT, with CNR matched at 120 kV, ICM reductions were 35%, 30%, 23%, and 15% with VMIs at 40, 50, 60, and 68 keV, respectively. On the dual-source DECT, ICM reductions were 52%, 48%, 42%, 33%, and 22% with VMIs at 40, 50, 60, 70, and 80 keV. On the dual-layer DECT, ICM reductions were 74%, 62%, 45%, and 22% with VMIs at 40, 50, 60, and 70 keV. CONCLUSIONS: Our work provided a quantitative baseline for other institutions to further optimize their scanning protocols to reduce the use of ICM.


Assuntos
COVID-19 , Meios de Contraste , Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Humanos , Meios de Contraste/química , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/instrumentação , SARS-CoV-2 , Adulto , Criança , Razão Sinal-Ruído , Doses de Radiação , Processamento de Imagem Assistida por Computador/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos
6.
Med Phys ; 51(5): 3322-3333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38597897

RESUMO

BACKGROUND: The development of a new imaging modality, such as 4D dynamic contrast-enhanced dedicated breast CT (4D DCE-bCT), requires optimization of the acquisition technique, particularly within the 2D contrast-enhanced imaging modality. Given the extensive parameter space, cascade-systems analysis is commonly used for such optimization. PURPOSE: To implement and validate a parallel-cascaded model for bCT, focusing on optimizing and characterizing system performance in the projection domain to enhance the quality of input data for image reconstruction. METHODS: A parallel-cascaded system model of a state-of-the-art bCT system was developed and model predictions of the presampled modulation transfer function (MTF) and the normalized noise power spectrum (NNPS) were compared with empirical data collected in the projection domain. Validation was performed using the default settings of 49 kV with 1.5 mm aluminum filter and at 65 kV and 0.257 mm copper filter. A 10 mm aluminum plate was added to replicate the breast attenuation. Air kerma at the isocenter was measured at different tube current levels. Discrepancies between the measured projection domain metrics and model-predicted values were quantified using percentage error and coefficient of variation (CoV) for MTF and NNPS, respectively. The optimal filtration was for a 5 mm iodine disk detection task at 49, 55, 60, and 65 kV. The detectability index was calculated for the default aluminum filtration and for copper thicknesses ranging from 0.05 to 0.4 mm. RESULTS: At 49 kV, MTF errors were +5.1% and -5.1% at 1 and 2 cycles/mm, respectively; NNPS CoV was 5.3% (min = 3.7%; max = 8.5%). At 65 kV, MTF errors were -0.8% and -3.2%; NNPS CoV was 13.1% (min = 11.4%; max = 16.9%). Air kerma output was linear, with 11.67 µGy/mA (R2 = 0.993) and 19.14 µGy/mA (R2 = 0.996) at 49 and 65 kV, respectively. For iodine detection, a 0.25 mm-thick copper filter at 65 kV was found optimal, outperforming the default technique by 90%. CONCLUSION: The model accurately predicts bCT system performance, specifically in the projection domain, under varied imaging conditions, potentially contributing to the enhancement of 2D contrast-enhanced imaging in 4D DCE-bCT.


Assuntos
Mama , Meios de Contraste , Meios de Contraste/química , Mama/diagnóstico por imagem , Tomografia Computadorizada por Raios X/instrumentação , Imagens de Fantasmas , Humanos , Mamografia/métodos , Mamografia/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído
7.
ACS Nano ; 18(19): 12453-12467, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38686995

RESUMO

Traditional magnetic resonance imaging (MRI) contrast agents (CAs) are a type of "always on" system that accelerates proton relaxation regardless of their enrichment region. This "always on" feature leads to a decrease in signal differences between lesions and normal tissues, hampering their applications in accurate and early diagnosis. Herein, we report a strategy to fabricate glutathione (GSH)-responsive one-dimensional (1-D) manganese oxide nanoparticles (MONPs) with improved T2 relaxivities and achieve effective T2/T1 switchable MRI imaging of tumors. Compared to traditional contrast agents with high saturation magnetization to enhance T2 relaxivities, 1-D MONPs with weak Ms effectively increase the inhomogeneity of the local magnetic field and exhibit obvious T2 contrast. The inhomogeneity of the local magnetic field of 1-D MONPs is highly dependent on their number of primary particles and surface roughness according to Landau-Lifshitz-Gilbert simulations and thus eventually determines their T2 relaxivities. Furthermore, the GSH responsiveness ensures 1-D MONPs with sensitive switching from the T2 to T1 mode in vitro and subcutaneous tumors to clearly delineate the boundary of glioma and metastasis margins, achieving precise histopathological-level MRI. This study provides a strategy to improve T2 relaxivity of magnetic nanoparticles and construct switchable MRI CAs, offering high tumor-to-normal tissue contrast signal for early and accurate diagnosis.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Compostos de Manganês , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Animais , Camundongos , Meios de Contraste/química , Humanos , Campos Magnéticos , Glutationa/química , Óxidos/química , Linhagem Celular Tumoral , Glioma/diagnóstico por imagem , Glioma/patologia , Tamanho da Partícula , Nanopartículas de Magnetita/química
8.
Biomater Sci ; 12(10): 2743-2754, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639493

RESUMO

Highly sensitive iron oxide nanoparticles with stable, safe and efficient surface functionalization, as potential substitutes for gadolinium-based contrast agents (GBCAs) with increasing biosafety concerns, exhibit great potential for high-performance magnetic resonance angiography (MRA). Herein, we developed ultrasmall catechol-PEG-anchored ferrite nanoparticles (PEG-UMFNPs) for highly sensitive MRA. The obtained nanoprobe has a high T1 relaxivity value (7.2 mM-1 s-1) due to its ultrasmall size and Mn doping. It has a suitable hydrodynamic size of 20 nm, which prevents rapid vascular extravasation and renal clearance and prolongs its blood circulation time. In vivo MRA at 3.0 T using the nanoprobe shows that the arteries and veins of rats, even blood vessels as small as 0.32 mm, are distinctly visible, and the contrast enhancement can last for at least 1 h. In addition, due to the outstanding contrast enhancement and long circulation time, the stenosis and recanalization process of the rat's carotid artery can be continuously monitored with a single injection of the nanoprobe. Our study indicates that PEG-UMFNPs are outstanding MR imaging nanoprobes that can be used to diagnose vascular diseases without the biosafety issues of GBCAs.


Assuntos
Catecóis , Meios de Contraste , Compostos Férricos , Angiografia por Ressonância Magnética , Polietilenoglicóis , Ratos Sprague-Dawley , Animais , Polietilenoglicóis/química , Ratos , Catecóis/química , Compostos Férricos/química , Meios de Contraste/química , Masculino , Nanopartículas/química , Artérias Carótidas/diagnóstico por imagem
9.
Inorg Chem ; 63(17): 7560-7570, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610098

RESUMO

[Ln·DOTA]- complexes and systems derived therefrom are commonly used in MRI and optical bioimaging. These lanthanide(III) complexes are chiral, and, in solution, they are present in four forms, with two sets of enantiomers, with the ligand donors arranged in either a square antiprismatic, SAP, or twisted square antiprismatic geometry, TSAP. This complicated speciation is found in laboratory samples. To investigate speciation in biological media, when Ln·DOTA-like complexes interact with chiral biomolecules, six Eu·DOTA-monoamide complexes were prepared and investigated by using 1D and 2D 1H NMR. To emulate the chirality of biological media, the amide pendant arm was modified with one or two chiral centers. It is known that a chiral center on the DOTA scaffold significantly influences the properties of the system. Here, it was found that chirality much further away from the metal center changes the available conformational space and that both chiral centers and amide cis/trans isomerism may need to be considered─a fact that, for the optically enriched materials, led to the conclusion that eight chemically different forms may need to be considered, instead of the four forms necessary for DOTA. The results reported here clearly demonstrate the diverse speciation that must be considered when correlating an observation to a structure of a lanthanide(III) complex.


Assuntos
Complexos de Coordenação , Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética , Elementos da Série dos Lantanídeos/química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Estereoisomerismo , Estrutura Molecular , Compostos Heterocíclicos com 1 Anel/química , Amidas/química , Meios de Contraste/química , Meios de Contraste/farmacologia
10.
Biomed Mater ; 19(3)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38626777

RESUMO

This study developed a probe Fe3O4-Cy5.5-trastuzumab with fluorescence and magnetic resonance imaging functions that can target breast cancer with high HER2 expression, aiming to provide a new theoretical method for the diagnosis of early breast cancer. Fe3O4-Cy5.5-trastuzumab nanoparticles were combined with Fe3O4for T2imaging and Cy5.5 for near-infrared imaging, and coupled with trastuzumab for HER2 targeting. We characterized the nanoparticles used transmission electron microscopy, hydration particle size, Zeta potential, UV and Fourier transform infrared spectroscopy, and examined its magnetism, fluorescence, and relaxation rate related properties. CCK-8 and blood biochemistry analysis evaluated the biosafety and stability of the nanoparticles, and validated the targeting ability of Fe3O4-Cy5.5 trastuzumab nanoparticles throughin vitroandin vivocell and animal experiments. Characterization results showed the successful synthesis of Fe3O4-Cy5.5-trastuzumab nanoparticles with a diameter of 93.72 ± 6.34 nm. The nanoparticles showed a T2relaxation rate 42.29 mM-1s-1, magnetic saturation strength of 27.58 emg g-1. Laser confocal and flow cytometry uptake assay showed that the nanoparticles could effectively target HER2 expressed by breast cancer cells. As indicated byin vitroandin vivostudies, Fe3O4-Cy5.5-trastuzumab were specifically taken up and effectively aggregated to tumour regions with prominent NIRF/MR imaging properties. CCK-8, blood biochemical analysis and histological results suggested Fe3O4-Cy5.5-trastuzumab that exhibited low toxicity to major organs and goodin vivobiocompatibility. The prepared Fe3O4-Cy5.5-trastuzumab exhibited excellent targeting, NIRF/MR imaging performance. It is expected to serve as a safe and effective diagnostic method that lays a theoretical basis for the effective diagnosis of early breast cancer. This study successfully prepared a kind of nanoparticles with near-infrared fluorescence imaging and T2imaging properties, which is expected to serve as a new theory and strategy for early detection of breast cancer.


Assuntos
Neoplasias da Mama , Carbocianinas , Imageamento por Ressonância Magnética , Receptor ErbB-2 , Trastuzumab , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Trastuzumab/química , Feminino , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Receptor ErbB-2/metabolismo , Carbocianinas/química , Camundongos , Linhagem Celular Tumoral , Nanopartículas de Magnetita/química , Camundongos Nus , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Meios de Contraste/química , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Artif Cells Nanomed Biotechnol ; 52(1): 218-228, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38646876

RESUMO

This study prepared and evaluated polymeric polybutylcyanoacrylate (PBCA) nanoparticles (NPs) that can be used as a new agent for contrast-enhanced intravascular ultrasound (IVUS) imaging with drug delivery capacity. The nanoformulation was successfully developed using suspension polymerisation and characterised in terms of size, size distribution, zeta potential, morphology, stability, toxicity effects, imaging effects and drug release study. The results showed that the nanoparticles were round and hollow, with a particle diameter of 215.8 ± 25.3 nm and a zeta potential of -22.2 ± 4.1 mV. In vitro experiments, the nanoparticles were safe, non-toxic, and stable in nature with the capacity to carry and release drug (ant-miR-126). Moreover, the nanoparticles can match the high-frequency probe of commercially IVUS as a contrast agent to improve the resolution of imaging (the mean echo intensity ratio in the vascular wall increased significantly from 10.89 ± 1.10 at baseline, to 24.51 ± 1.91 during injection and 43.70 ± 0.88 after injection, respectively p < .0001). Overall, a new nano agent with drug-carrying capacity was prepared, which can be used in combination with IVUS for simultaneous diagnosis and targeted therapy of coronary atherosclerosis.


Assuntos
Meios de Contraste , Portadores de Fármacos , Embucrilato , Nanopartículas , Nanopartículas/química , Meios de Contraste/química , Embucrilato/química , Portadores de Fármacos/química , Animais , Ultrassonografia de Intervenção/métodos , Humanos , Liberação Controlada de Fármacos
12.
J Nanobiotechnology ; 22(1): 162, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594700

RESUMO

To overcome the problems of commercial magnetic resonance imaging (MRI) contrast agents (CAs) (i.e., small molecule Gd chelates), we have proposed a new concept of Gd macrochelates based on the coordination of Gd3+ and macromolecules, e.g., poly(acrylic acid) (PAA). To further decrease the r2/r1 ratio of the reported Gd macrochelates that is an important factor for T1 imaging, in this study, a superior macromolecule hydrolyzed polymaleic anhydride (HPMA) was found to coordinate Gd3+. The synthesis conditions were optimized and the generated Gd-HPMA macrochelate was systematically characterized. The obtained Gd-HPMA29 synthesized in a 100 L of reactor has a r1 value of 16.35 mM-1 s-1 and r2/r1 ratio of 2.05 at 7.0 T, a high Gd yield of 92.7% and a high product weight (1074 g), which demonstrates the feasibility of kilogram scale facile synthesis. After optimization of excipients and sterilization at a high temperature, the obtained Gd-HPMA30 formulation has a pH value of 7.97, osmolality of 691 mOsmol/kg water, density of 1.145 g/mL, and viscosity of 2.2 cP at 20 â„ƒ or 1.8 cP at 37 â„ƒ, which meet all specifications and physicochemical criteria for clinical injections indicating the immense potential for clinical applications.


Assuntos
Meios de Contraste , Anidridos Maleicos , Metacrilatos , Polímeros , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos
13.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675647

RESUMO

This study aimed to develop multifunctional nanoplatforms for both cancer imaging and therapy using superparamagnetic iron oxide nanoparticles (SPIONs). Two distinct synthetic methods, reduction-precipitation (MR/P) and co-precipitation at controlled pH (MpH), were explored, including the assessment of the coating's influence, namely dextran and gold, on their magnetic properties. These SPIONs were further functionalized with gadolinium to act as dual T1/T2 contrast agents for magnetic resonance imaging (MRI). Parameters such as size, stability, morphology, and magnetic behavior were evaluated by a detailed characterization analysis. To assess their efficacy in imaging and therapy, relaxivity and hyperthermia experiments were performed, respectively. The results revealed that both synthetic methods lead to SPIONs with similar average size, 9 nm. Mössbauer spectroscopy indicated that samples obtained from MR/P consist of approximately 11-13% of Fe present in magnetite, while samples obtained from MpH have higher contents of 33-45%. Despite coating and functionalization, all samples exhibited superparamagnetic behavior at room temperature. Hyperthermia experiments showed increased SAR values with higher magnetic field intensity and frequency. Moreover, the relaxivity studies suggested potential dual T1/T2 contrast agent capabilities for the coated SPpH-Dx-Au-Gd sample, thus demonstrating its potential in cancer diagnosis.


Assuntos
Meios de Contraste , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Nanomedicina Teranóstica , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Humanos , Ouro/química , Dextranos/química , Gadolínio/química , Propriedades de Superfície , Hipertermia Induzida/métodos , Tamanho da Partícula
14.
Anal Chem ; 96(17): 6707-6714, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38631336

RESUMO

Molecular magnetic resonance imaging (mMRI) of biomarkers is essential for accurate cancer detection in precision medicine. However, the current clinically used contrast agents provide structural magnetic resonance imaging (sMRI) information only and rarely provide mMRI information. Here, a tumor-specific furin-catalyzed nanoprobe (NP) was reported for differential diagnosis of malignant breast cancers (BCs) in vivo. This NP with a compact structure of Fe3O4@Gd-DOTA NPs (FFG NPs) contains an "always-on" T2-weighted MR signal provided by the magnetic Fe3O4 core and a furin-catalyzed enhanced T1-weighted MR signal provided by the Gd-DOTA moiety. The FFG NPs were found to produce an activated T1 signal in the presence of furin catalysis and an "always-on" T2 signal, providing mMRI and sMRI information simultaneously. Ratiometric mMRI:sMRI intensity can be used for differential diagnosis of malignant BCs MDA-MB-231 and MCF-7, where the furin levels relatively differ. The proposed probe not only provides structural imaging but also enables real-time molecular differential visualization of BC through enzymatic activities of cancer tissues.


Assuntos
Neoplasias da Mama , Furina , Imageamento por Ressonância Magnética , Furina/metabolismo , Furina/análise , Humanos , Neoplasias da Mama/diagnóstico por imagem , Feminino , Diagnóstico Diferencial , Animais , Catálise , Camundongos , Meios de Contraste/química , Linhagem Celular Tumoral
15.
Nanoscale ; 16(18): 9136, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38661520

RESUMO

Expression of concern for 'Gadolinium embedded iron oxide nanoclusters as T1-T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery' by Xiaoyong Wang et al., Nanoscale, 2013, 5, 8098-8104, https://doi.org/10.1039/C3NR02797J.


Assuntos
Gadolínio , Imageamento por Ressonância Magnética , RNA Interferente Pequeno , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Gadolínio/química , Humanos , Compostos Férricos/química , Meios de Contraste/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Animais
16.
Inorg Chem ; 63(18): 8462-8475, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38642052

RESUMO

In recent years, pyclen-based complexes have attracted a great deal of interest as magnetic resonance imaging (MRI) contrast agents (CAs) and luminescent materials, as well as radiopharmaceuticals. Remarkably, gadopiclenol, a Gd(III) bishydrated complex featuring a pyclen-based heptadentate ligand, received approval as a novel contrast agent for clinical MRI application in 2022. To maximize stability and efficiency, two novel chiral pyclen-based chelators and their complexes were developed in this study. Gd-X-PCTA-2 showed significant enhancements in both thermodynamic and kinetic stabilities compared to those of the achiral parent derivative Gd-PCTA. 1H NMRD profiles reveal that both chiral gadolinium complexes (Gd-X-PCTA-1 and Gd-X-PCTA-2) have a higher relaxivity than Gd-PCTA, while variable-temperature 17O NMR studies show that the two inner-sphere water molecules have distinct residence times τMa and τMb. Furthermore, in vivo imaging demonstrates that Gd-X-PCTA-2 enhances the signal in the heart and kidneys of the mice, and the chiral Gd complexes exhibit the ability to distinguish between tumors and normal tissues in a 4T1 mouse model more efficiently than that of the clinical agent gadobutrol. Biodistribution studies show that Gd-PCTA and Gd-X-PCTA-2 are primarily cleared by a renal pathway, with 24 h residues of Gd-X-PCTA-2 in the liver and kidney being lower than those of Gd-PCTA.


Assuntos
Compostos Azabicíclicos , Quelantes , Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética , Meios de Contraste/química , Animais , Camundongos , Quelantes/química , Quelantes/síntese química , Gadolínio/química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Estrutura Molecular , Estereoisomerismo , Humanos , Feminino
17.
Acta Med Okayama ; 78(2): 135-142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38688831

RESUMO

This study aimed to evaluate the potential reduction in contrast medium utilization using photon-counting detector computed tomography (PCD-CT). One PCD-CT scan (CT1) and three conventional (non-PCD-CT) CT scans (CT2-CT4) were performed using a multi-energy CT phantom that contained eight rods with different iodine concentrations (0.2, 0.5, 1, 2, 5, 10, 15, and 20 mg/ml). The CT values of the seven groups (CT1 for 40, 50, 60, and 70 keV; and CT2-4) were measured. Noise and contrast-to-noise ratio (CNR) were assessed for the eight rods at various iodine concentrations. CT2 and CT1 (40 keV) respectively required 20 mg/ml and 5 mg/ml of iodine, indicating that a comparable contrast effect could be obtained with approximately one-fourth of the contrast medium amount. The standard deviation values increased at lower energy levels irrespective of the iodine concentration. The CNR exhibited a decreasing trend with lower iodine concentrations, while it remained relatively stable across all iodine levels (40-70 keV). This study demonstrated that virtual monochromatic 40 keV images offer a similar contrast effect with a reduced contrast medium amount when compared to conventional CT systems at 120 kV.


Assuntos
Meios de Contraste , Imagens de Fantasmas , Fótons , Tomografia Computadorizada por Raios X , Meios de Contraste/química , Tomografia Computadorizada por Raios X/métodos , Iodo , Humanos
18.
Biomacromolecules ; 25(5): 2740-2748, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38563478

RESUMO

A self-immolative radiocontrast polymer agent has been newly designed for this study. The polymer agent is composed of a degradable poly(benzyl ether)-based backbone that enables complete and spontaneous depolymerization upon exposure to a specific stimulus, with iodophenyl pendant groups that confer a radiodensity comparable to that of commercial agents. In particular, when incorporated into a biodegradable polycaprolactone matrix, the agent not only reinforces the matrix and provides prolonged radiopacity without leaching but also governs the overall degradation kinetics of the composite under basic aqueous conditions, allowing for X-ray tracking and exhibiting a predictable degradation until the end of its lifespan. Our design would be advanced with various other components to produce synergistic functions and extended for applications in implantable biodegradable devices and theragnostic systems.


Assuntos
Meios de Contraste , Poliésteres , Meios de Contraste/química , Meios de Contraste/síntese química , Poliésteres/química , Poliésteres/síntese química , Polímeros/química , Raios X
19.
J Mater Chem B ; 12(13): 3273-3281, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38469725

RESUMO

Superoxide, an anionic dioxygen molecule, plays a crucial role in redox regulation within the body but is implicated in various pathological conditions when produced excessively. Efforts to develop superoxide detection strategies have led to the exploration of organic-based contrast agents for magnetic resonance imaging (MRI). This study compares the effectiveness of two such agents, nTMV-TEMPO and kTMV-TEMPO, for detecting superoxide in a mouse liver model with lipopolysaccharide (LPS)-induced inflammation. The study demonstrates that kTMV-TEMPO, with a strategically positioned lysine residue for TEMPO attachment, outperforms nTMV-TEMPO as an MRI contrast agent. The enhanced sensitivity of kTMV-TEMPO is attributed to its more exposed TEMPO attachment site, facilitating stronger interactions with water protons and superoxide radicals. EPR kinetics experiments confirm kTMV-TEMPO's faster oxidation and reduction rates, making it a promising sensor for superoxide in inflamed liver tissue. In vivo experiments using healthy and LPS-induced inflamed mice reveal that reduced kTMV-TEMPO remains MRI-inactive in healthy mice but becomes MRI-active in inflamed livers. The contrast enhancement in inflamed livers is substantial, validating the potential of kTMV-TEMPO for detecting superoxide in vivo. This research underscores the importance of optimizing contrast agents for in vivo imaging applications. The enhanced sensitivity and biocompatibility of kTMV-TEMPO make it a promising candidate for further studies in the realm of medical imaging, particularly in the context of monitoring oxidative stress-related diseases.


Assuntos
Superóxidos , Vírus do Mosaico do Tabaco , Camundongos , Animais , Meios de Contraste/química , Lipopolissacarídeos , Imageamento por Ressonância Magnética/métodos , Fígado
20.
Anal Chem ; 96(11): 4394-4401, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451935

RESUMO

Noninvasive monitoring of cancer metastasis is essential to improving clinical outcomes. Molecular MRI (mMRI) is a special implementation of noninvasive molecular imaging that promises to offer a powerful means for early detection and analysis of pathological states of cancer by tracking molecular markers. However, this is often hindered by the challenging issue of obtaining transformable mMRI contrast agents with high sensitivity, specificity, and broad applicability, given the high tumor heterogeneity and complex metastatic features. Herein, we present a dual-receptor targeted, multivalent recognition strategy and report a new class of mMRI probes for enhanced imaging of metastatic cancer. This probe is designed by covalently conjugating Gd-chelate with phenylboronic acid and an aptamer via an affordable polymerization chemistry to concurrently target two different cell-membrane receptors that are commonly overexpressed and highly implicated in both tumorigenesis and metastasis. Moreover, the polymerization chemistry allows the probe to contain a bunch of targeting ligands and signal reporters in a single chain, which not only leads to more than 2-fold enhancement in T1 relaxivity at 1.5 T compared to the commercial contrast agent but also enables it to actively target tumor cells in a multivalent recognition manner, contributing to a much higher imaging contrast than single-receptor targeted probes and the commercial agent in mouse models with lung metastases, yet without inducing systemic side effects. We expect this study to offer a useful molecular tool to promote transformable applications of mMRI and a better understanding of molecular mechanisms involved in cancer development.


Assuntos
Meios de Contraste , Neoplasias , Camundongos , Animais , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA